Hechler's theorem for the null ideal
نویسندگان
چکیده
We prove the following theorem: For a partially ordered set Q such that every countable subset has a strict upper bound, there is a forcing notion satisfying ccc such that, in the forcing model, there is a basis of the null ideal of the real line which is order-isomorphic to Q with respect to set-inclusion. This is a variation of Hechler’s classical result in the theory of forcing, and the statement of the theorem for the meager ideal has been already proved by Bartoszyński and the author.
منابع مشابه
Hechler's Theorem for tall analytic P-ideals
We prove the following version of Hechler's classical theorem: For each partially ordered set (Q,≤) with the property that every countable subset of Q has a strict upper bound in Q, there is a ccc forcing notion such that in the generic extension for each tall analytic P-ideal I (coded in the ground model) a co nal subset of (I,⊆∗) is order isomorphic to (Q,≤).
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملGENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کامل3 Hechler ’ s theorem for the null ideal
We prove the following theorem: For a partially ordered set Q such that every countable subset has a strict upper bound, there is a forcing notion satisfying ccc such that, in the forcing model, there is a basis of the null ideal of the real line which is order-isomorphic to Q with respect to set-inclusion. This is a variation of Hechler’s classical result in the theory of forcing, and the stat...
متن کاملN ov 2 00 2 Hechler ’ s theorem for the null ideal
We prove the following theorem: For a partially ordered set Q such that every countable subset has a strict upper bound, there is a forcing notion satisfying ccc such that, in the forcing model, there is a basis of the null ideal of the real line which is order-isomorphic to Q with respect to set-inclusion. This is a variation of Hechler’s classical result in the theory of forcing, and the stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arch. Math. Log.
دوره 43 شماره
صفحات -
تاریخ انتشار 2004